Structural studies of bis (μ_{2}-acetophenoniminato)-bis(tricarbonyliron) by NMR and X-ray diffraction: deviations from symmetry in anti and syn isomers

Andrzej Zimniak ${ }^{\text {a, }}$, Janusz Zachara ${ }^{\text {b }}$
${ }^{2}$ Medical Academy of Warsow, Faculty of Pharmacy, 02-097 Warsaw, Poland
${ }^{\text {b }}$ Warsaw University of Technology, Facklyy of Chemisry, 00-664 Warsow, Polard

Received 27 June 1996; revised 8 October 1996

Abstract

Alstract Two distinct stnuctural isomers obtained in the reaction of 1,4 -dimethyl-1,4-diphenyl-2,3-diazabuta-1,3-diese $\left(f\left(\mathrm{CH}_{3}\right)(\mathrm{P} \| \mathrm{a}) \mathrm{C}=\mathrm{N}-\right\}_{2}$ with uriiron dodecacarbonyl were separated, characterized by NMR, and their molecular structures were determined by X-ray difiraction Ondy idealized symmetry in both resolved ansi and sym forms have been observed Geometry ansalysis indicated in the sya forma a substantial deviation from symmetry, especially in the peripheral region of the molecule. This deviation is preserved in solustions, as dexanstrated by ${ }^{13}$ C NMR.

Keywords: Iron complexes; Axines; Bis(tricarbonyl iron); Crysal saucture; NMR; Bis(μ_{2}-acetophemonimsinato)-bis(tricarbonyliron)

1. Introduction

In the reaction of azines $\left\{\mathrm{R}^{\prime} \mathrm{R}^{2} \mathrm{C}=\mathrm{N}-\right\}_{2}$ with trïron dodecacarbonyl, complexes of the general formula ($\left.\mathrm{R}^{\prime} \mathrm{R}^{2} \mathrm{CN}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ have been obtained. A similar reaction with iron pentacarbonyl was described for 4,4'-dimethylbenzophenone azine [1]. When aldazines were used as substrates ($\mathbf{R}^{1}=$ phenyl or p-substituted phenyl; $\mathbf{R}^{2}=\mathbf{H}$), deep red products were isolated, which could not be separated into isomers [23]. Complexes of ketazines have been described as orange compounds, substituted as follows: $\mathrm{R}^{1}=\mathrm{R}^{\mathbf{2}}=\boldsymbol{p}$ - $\mathrm{CH}_{3} \mathbf{P h}$ ([1], determination of structure) and $\mathbf{R}^{1}=\mathbf{R}^{\mathbf{2}}=\mathbf{C H}_{3}$ [4]. In the present work, a complex of this type with $\mathbf{R}^{\mathbf{1}}=\mathrm{Ph}$, $\mathbf{R}^{\mathbf{2}}=\mathrm{CH}_{\mathbf{3}}$ is reported for the first time in the form of two structural isomers.

Thus, the type of substitution on the azine system is critical for the path of complexation. As fousid by us, ketazines and aldazines substituted by phenyl groups
yield complexes of the same composition but different structure. In the case of ketazises, the cemsral $\mathbf{N}-\mathbf{N}$ bond is cleaved and derivatives showiag knows di- μ iminato structure occur [1] (Scheme 1).

In phenyl-substituted aldazines $(p-\mathrm{RPhCH}=\mathrm{N}-)_{2}(\mathrm{R}$ $=\mathrm{H}, \mathrm{F}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}$), according to our preliminary X -ray results (for $\mathrm{R}=\mathrm{CH}_{3}$), the backbone of the molecule remains intact The reaction occurs with or-tho-proton rearrangement to the azomedine carboas and the metallization of the phenyl ring; this structure resembles those found for complexes obtained from Schiff bases and diiron enneacarbonyl [5]. Our results demonstrate that, in the case of beazzldarines, only one of the nitrogen atoms is bonded to both irons, whereas the other $p-\mathrm{RPhCH}=\mathrm{N}-$ moicty remains unengaged in the complexation ${ }^{1}$ (Scheme 1). Is contrast, a conuplex of an aliphatic aldazine $\left(\mathrm{CH}_{3} \mathrm{CHN}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right.$ has been reported as a typical di- μ-iminasto system occaming in the syn form only [6]. A complex of a different substi-

[^0][^1]

Scheme I. Complexation reactions of $\mathrm{Fe}_{3}\left(\mathrm{CO}_{12}\right.$ with ketazines and aldarines.
tuted aliphatic aldazine $\left\{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right)_{2} \cdot \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ was formerly obtained by one of us [2].

2. Resplats and discussion

In a reaction of acetophenone azine ($\left(\mathrm{CH}_{3}\right)(\mathrm{Ph}) \mathrm{C}=\mathrm{N}-\mathrm{I}_{2}$ with triiron dodecacarbonyl, a yellow complex was obtained in good yield which could be separated chromatographically into two isomers (I and II) according to Ref. [7]. In the work described in the presemt paper, the structure of tuese isomeric complexation products was studied by NMR and by single crystal X-ray diffraction. According to the structure described for the benzophenone system [1], it was theoretically possible that both anti and $s y n$ forms of the bis $\left(\mu_{2}{ }^{-}\right.$ acetophenoniminato)-bis(tricarbonyliron) would be obtained. However, the possibility of a conformational selectivity for this type of complexation product has been reported previously [6].

2.1. Discussion of the NMR data

In ${ }^{1}$ H NMR, the analysis confirmed the conformational homogeneity of the starting azine. The methyl groups gave one sharp singlet at 2.32 ppm . In the spec-

Table 1
${ }^{13} \mathrm{C}$ NMR shifts for complexes obtained from acetophenone axine in parts per milion (8), measured in CDCl_{3}

Eromer	$\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$	Aromatic CH	Aromatic $C_{\text {Iv }}$	$\mathbf{C}=\mathbf{N}$
I anti	32.87	125.59	145.65	177.32
		128.41		
If spa	32.83	125.32	945.77	177.69
		128.30		
		128.41		

Fig. 1. ORTEP diagram of (a) anti and (b) sym isomers of \{ $\left(\mathrm{CH}_{3}\right)\left(\mathrm{PH}_{3}\right) \mathrm{CN}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ showing the atom labeling scheme. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
tra of complexes I and II the methyl groups appeared as sharp singlets at 2.40 and 2.50 ppm respectively. These results could signify a high symmetry of both isomeric molecules. However, the maltiplets in the aromatic region were not regular for both I and II, and no distinct differentiation in symmetry could be assumed.

The ${ }^{13} \mathrm{C}$ NMR spectra (listed in Table 1) confinm the general symmetric structure for both isomers, although in the aromatic CH region three signals are observed for II, and only two signals for I. This rather indicates the possibility of perturbation in symmetry of the phenyl ring area in II compared with I, although a simple coincidance of resonances in I cannot be excluded.

2.2. Molecular structure

As found by X-ray crystallographic studies, the weak $\mathrm{N}-\mathrm{N}$ bond in acetophenone azine is cleaved during the complexacion and two iron atoms are incorporated into
the center of the molecule forming equivalent bridges between new independent and identical ligands, in analogy to $4,4^{\prime}$-dimethylbeazophenome azise described in Ref. [1]. Two possible conformations at the $\mathrm{C}=\mathrm{N}$ domble bond give rise to two isomeric forms: anti (1) and syn (III). Molecular strutures of 1 and II are shown in Fig. 1, and selected bond lengths and angles are listed in Table 2. To illustrate the structural differences between isomers, least-squares planes passiug through selected groups of atoms have been defined and the respective dihetral angles have been calculated (discussion in the text).

The nitrogen ard iroa atoms form an ahmost symmetric tetrahedron, typical for this type of compound. Also, in the case where the nitrogens show sp ${ }^{3}$ hybridization, the same symmetry of the cone $\mathrm{Fe}_{2}(\mathrm{CO})_{5} \mathrm{~N}_{2}$ occurs [8]. The geometry observed by us for I and II is in agreement with the literature data $[6,8]$. In both isomers I and II the $\mathrm{N}-\mathrm{Fe}$ bonds show full equivalency, are of σ

Table 2
Selected interatomic distances [\bar{A}] and bond anglex [${ }^{\circ}$] for I and II

1		II	
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	241377)	$\mathrm{Fe}(1)$ - $\mathrm{Fe}(2)$	23990(6)
$\mathrm{Fe}(1)-\mathrm{C}(1 \mathrm{~A})$	1.784(3)	$\mathrm{Fe}(1)-\mathrm{C}(1 \mathrm{~A})$	1.790(3)
Fe(1)-C(ia)	1.805(3)	$\mathrm{Fe}(1)-\mathrm{C}(1 \mathrm{~B})$	18043)
$\mathrm{Fe}(1)-\mathrm{C}(1 \mathrm{C})$	1.780(3)	$\mathrm{Fe}(1)-\mathrm{C}(1 \mathrm{C})$	1.786(3)
$\mathrm{FE}(2)-\mathrm{C}(2 \mathrm{~A})$	1.784(3)	$\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{~A})$	$1.783(3)$
$\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{~B})$	$1.800(3)$	$\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{~B})$	1.829(3)
$\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{C})$	1.791(4)	$\mathrm{Fe}(2)-\mathrm{C}(2 \mathrm{C})$	1.778(3)
$\mathrm{Fe}(1)-\mathrm{N}(1)$	1.918(2)	$\mathrm{Fe}(1)-\mathrm{N}(1)$	1.924(2)
Fe(1) - $\mathrm{N}(2)$	1.92S(2)	$\mathrm{Fe}(1)-\mathrm{N}(2)$	1.919(2)
$\mathrm{Fe}(2)-\mathrm{N}(1)$	1.918(2)	$\mathrm{Fe}(2)-\mathrm{N}(1)$	1.924(2)
$\mathrm{Fe}(2)-\mathrm{N}(2)$	1.915(2)	$\mathrm{Fe}(2)-\mathrm{N}(2)$	1925(2)
$\mathrm{N}(1)-\mathrm{C}(10)$	1.256(3)	$\mathrm{N}(1)-\mathrm{Cl} 10)$	1.263(3)
$N(2)-C(20)$	1.256(3)	$N(2)-C(20)$	1.254(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.500(3)	C(10)-C(11)	1.501(3)
$C(10)-C(12)$	1.489(3)	$C(10)-C(2)$	1.491(3)
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.503(4)$	$\mathrm{C}(20)-\mathrm{C}(21)$	1.498(3)
$C(20)-C(22)$	1.491(3)	$\mathrm{C}(20)-\mathrm{C}(22)$	1.491(3)
$\mathrm{M}(1)-\mathrm{Fe}(1)-\mathrm{N}(2)$	76.48(8)	$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(2)$	7623(8)
$\mathrm{N}(1)-\mathrm{Fe}(2)-\mathrm{N}(2)$	76.71(7)	$\mathrm{N}(1)-\mathrm{Fe}(2)-\mathrm{N}(2)$	76.10(8)
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	51.01(5)	$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	51.42(5)
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	50.88(5)	$N(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$51.50(5)$
$\mathrm{N}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	51.02(5)	$\mathrm{N}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$51.48(5)$
$\mathrm{N}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	51.23 (5)	$\mathrm{N}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$51.38(5)$
$\mathrm{Fe}(1)-\mathrm{N}(1)-\mathrm{Fe}(2)$	77.98(7)	$\mathrm{Fe}(1)-\mathrm{N}(1)-\mathrm{Fe}(2)$	77.14(7)
$\mathrm{Fe}(1)-\mathrm{M}(2)-\mathrm{Fe}(2)$	77.89(7)	$\mathrm{Fe}(1)-\mathrm{N}(2)-\mathrm{Fe}(2)$	7722(7)
$\mathrm{C}(10)-\mathrm{N}(1)$ - Fe(1)	141.6(2)	C(10)-N(1)-Fal	139.2(2)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{Fe}(2)$	140.4(2)	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{Fe}(2)$	143.3(2)
$\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{Fe}(1)$	140.4(2)	C(20)-N(2)-Fe(1)	1424(2)
$\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{Fe}(2)$	141.6(2)	$\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{Fe}(2)$	140.3(2)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$1227(2)$	$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.372)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(12)$	120.8(2)	$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(12)$	122.3(2)
$C(11)-C(10)-C(12)$	116.5(2)	$C(11)-C(10)-C(12)$	116.5(2)
$N(2)-C(20)-C(21)$	1225(3)	$\mathbf{N (2) - C (2 0) - C (2 1) ~}$	12272)
$\mathrm{N}(2)-\mathrm{C}(20)-\mathrm{C}(22)$	120.9.9)	$N(2)-C(20)-C(22)$	$121.1(2)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)$	116.5(2)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)$	116.2(2)

type, and deviate only slightly from the mean value of $1.92 \AA$. The distance of 2.38 A between nitrogen atoms nules out the existence of the bond. The iron atoms are linked and the lengths of the bonds are $2.4137(7)$ and $23990(6) \AA$ respectively for 1 and II. The dihedral angle between planes $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}(1)$ and $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}(2)$ is $74.29(8)^{\circ}$ and $75.80(6)^{\circ}$ for anti and $s y m$ respectively. The atoms of the double bonds $\mathrm{C}_{2} \mathrm{C}=\mathrm{N}$ are located approximately in the planes of the heterocyclic three-membered rings $\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}$. Some distortion of the plane defined by the Fe (1) Fe (2) N atoms with respect to the above-mentioned $\mathrm{N}=\mathrm{CC}_{2}$ planes has been observed. The dihedral angles between these planes are $4.9(2)^{\circ}$ and $2.9(1)^{\circ}$ for the isomer anti, and $5.2(2)^{\circ}$ and $1.9(2)^{\circ}$ for $s y n$. The π orbitals of the double bonds $\mathrm{C}(10)=\mathrm{N}(1)$ and $\mathrm{C}(20)=\mathrm{N}(2)$ are not engaged in the binding of iron; the lengths of these bonds are 1.256 (3), $1.256(3) \AA$ for I and 1.263(3), I.254(3) A for II. The central core $\mathrm{Fe}_{2}(\mathrm{~N}=\mathrm{C})_{2}$ in both isomers is almost identical. Significant structural differences between isomers are detectable in the regions of methyl and pinenyl grours, and the carbonyl ligands. Thus, the angles between planes of both double bonds $\left(\mathrm{N}=\mathrm{CC}_{\text {mechyy }} \mathrm{C}_{\text {phenyy }}\right.$) are $71.2(1)^{\circ}$ for I and $82.3(1)^{\circ}$ for II. For the anti form I, a quasi-two-fold axis perpendicular to the $\mathrm{Fe}-\mathrm{Fe}$ bond has been observed (C_{2} symmetry point group). In the syn form II, both phenyl rings are located close to one of the iron atoms. The molecule shows a quasi-symmetry plane (C_{s} symmery point group) which runs through both iron atoms

Deviation from symmetry in eacll isomer can be roughly estimated by comparison of dihedral angles formed by the planes of the phenyl rings and the planes of the double bonds, different for both parts of the molecule. Their values are 86.5(1) ${ }^{\circ}$ and $81.7(1)^{\circ}$ in anti, and 51.8(1) ${ }^{\circ}$ and 68.3(1) ${ }^{\circ}$ in syn. Thus, the non-equality for $s y n$ is remarkably higher than that for anti. These values also show that in both isomers the coupling of the double bonds with the aromatic rings is only partial.

Thus, for the syn isomer, the highest value of deflection has been observed for the phenyl rings. The central system containing the iron bridge and nitrogen atoms shows a relatively high symmetry compared with peripheral parts of the molecule. In the anti isomer, the deviation from symmetry is similar in all regions of the molecule.

The above data in general confirm a higher symmetry of the anti isomer in relation to $s y n$, although both isomers show attributes of only a quasi- (idealized) symmetry. Both NMR and X-ray experiments reveal a distinct non-equivalence of the phenyl rings in the syn form, presumably because of higher spatial crowding. For comparison [6], in the case of $s y n$ bis(μ-ethyl-ideneamido)-bis(tricarbonyliron!, substituted by relatively small methyl groups, the molecule lies on the crystallographic mirror plane and shows C_{s} symmetry.

In contrast, the molecule of bis(μ-cyclohexylidenei-minato)-bis(tricarbonyliron) with bulkier substituents exhibits in the solid state only idealized symmerry [9].

It should be emphasized that the differences in symmetry observed in this study for solid state structures (X-ray results) are preserved in solution (NMR), indicating that the impact of intramolecular interactions on the geometry of the molecules is more pronounced than the effect of external factors, e.g. solvation.

3. Experimental

Complexation reactions with iron dodecacarbonyl and the separation of isomers were carried out according to published methods [7]. 1,4-Dimethyl-1,4-diphenyl-2,3-diazabuta- 1,3 -diene (1 mmol) and triiron dodecacarbonyl (3 mmol) were refluxed in isooctane under nitrogen. For the chromatographic purification on Kieselgel 60 (Merck), chloroform-n-hexane ($1: 5$) was used as the solvent. The products were rectystallized from n hexane. ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}: \delta$ anti isomer I 2.40 (s , $6 \mathrm{H}), 7.07-7.38(\mathrm{~m}, 10 \mathrm{H})$; syn isomer II $2.50(\mathrm{~s}, 6 \mathrm{H})$, $6.99-7.38(\mathrm{~m}, 10 \mathrm{H})$. All reagents and solvents used were pure or analytically pure. The synthesis of 1,4 -di-methyl-1,4-diphenyl-2,3-diazabuta-1,3-diene is described in Ref. [10]. The NMR spectra were recorded with a Varian XL-200 instrument, the chemical shift values are given in parts per million (δ).

3.1. X-ray structure determination

X-ray data were collected on a Siemens P3 four-circle diffractometer at room temperature. Crysi. Is of isomeric complexes I and II were grown from n-hexane. The crystailographic data, parameters for data collection, and refinement procedure are presented in Table 3. A well-shaped yellow crystal of I was mounted directly on a glass pin attached to the goniometer head. An automatic search routine was used to locate up to 26 reflections in the range $15.7^{\circ}<2 \theta<33.0^{\circ}$, which were used for determination and least-squares refinement of the unit cell parameters. Intensity data were recorded using the $\omega-2 \theta$ scan technique. No crystal decay was noticed. The data were corrected for Lorentz and polarization effects. Since the absorption coefficient was comparatively high ($\mu=1.28 \mathrm{~cm}^{-1}$) a numerical correction based on a well-defined crystal shape (nine faces) was applied. The structure was solved in $C 2 / c$ space group by direct methuds using the shelxs-86 program [11], which revealed the positions of all non-hydrogen atoms. All non-lydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were located using difference Fourier maps and isotropically refined.

General procedures used for data collection of compound II were as for I. A suitable, well-shaped yellow

Table 3
Crystal data and structure refinemem for I and II

Empirical formula		$a n t i-\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$ (1)	${ }_{51 \mathrm{~m}} \mathrm{C} \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$ (11)
Formula weight		516.07	516.07
Temperarure (K)		293(2)	293(2)
Wavelength (\AA)		0.71073	0.71073
Crystal system		Monoclinic	Orthontombic
Space group		C2/c	Pbca
Unit cell dimensions			
a (d)		31.389(8)	14.838(3)
$b(A)$		10.476(3)	16.522(4)
$c(A)$		14.304(4)	18.6089(5)
β (')		95.68(2)	
Volume (\mathbf{A}^{3})		4681(2)	4562(2)
Z		8	8
Density (calc.) Mgm^{-3})		1.465	1503
Absorption coefficient (mm^{-1})		1.278	1.311
$F(000)$		$20 \% 6$	2096
Crystal size (mm^{3})		$0.64 \times 0.58 \times 0.36$	$0.87 \times 0.74 \times 0.15$
20 range for data collection (${ }^{(}$)		4.0 to 50.0	4.0 to 50.0
Reflections collected		4157	3992
Independemt reflections		4079	3990
$\boldsymbol{R}_{\text {int }}$		0.0196	0.0277
Absorption correction		Analytical from crystul shape	Analytical from crystal stape
Max. and min. transmission		0.6954 and 0.5847	0.8226 and 0.4330
Data/restraints/parameters		4077/0/353	3989/0/303
Gcodness-of-fit on F^{2}		1.033	0.974
Final R indices [$1>2 \sigma(\mathrm{l})$]	\boldsymbol{R}_{1}	0.0292	0.0298
	$w R_{2}$	0.0725	0.0683
R indices (all data)	\boldsymbol{R}_{1}	0.0419	0.0468
	$\boldsymbol{w} \mathbf{R}_{2}$	0.0809	0.0732
Largest difference peak/hole (e \AA^{-3})		+0.23/-0.14	+0.31/-0.18

crystal of II was selected for all X-ray measurements. 26 reflections in the range $15.8^{\circ}<2 \theta<34.3^{\circ}$ were used for least-squares refinement of the unit cell parameters. Two check reflections (314,144) repeated every 70 reflections showed a decay of 1.3%, and the intensities were adjusted accordingly. A numerical absorption correction was applied on the basis of the crystal shape. The observed systematic absences indicated that the space group was Pbca. The phase problem was solved by direct methods using the shelxs-86 program [11]. The Fe, O and N atoms and part of the C atoms were found on the E-map. The remaining non-hydrogen atoms were located using difference Fourier maps and refined with anisotropic thermal parameters. Positions of hydrogen atoms of the phenyl groups were generated and allowed to ride on the appropriate carbon. Hydrogens of the methyl groups were refined as disordered groups with two positions rotated about the $\mathrm{C}-\mathrm{C}$ bond by 60° $\left[U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Both structures were refined using a full-matrix least-squares method against F^{2} values (sheixt-93 program [12D. The final weighting schemes for I and II were $w^{-1}=\sigma^{2}\left(F_{0}^{2}\right)+(0.0424 P)^{2}$, and $w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)$ $+(0.0456 P)^{2}+0.3350 P$ respectively, where $P=$ $1 / 3\left(F_{0}^{2}+2 F_{c}^{2}\right)$. In both cases the largest positive and
negative peaks on a final difference Fourier map have no significant chemical meaning, and the maximum shift/error ratios in final cycles of refinement were less than 0.001 . Tables of atomic coordinates and anisotropic thermal parameters, hydrogen atom coordinates and a complete list of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

The authors thank the State Committse for Scientific Research for financial support of this work (Graat No. 2P303 023 05).

References

[1] D. Bright and O.S. Milk, Chrin Comman, (1967) 245.
[2] A. Zirratial, Polish J. Chem, 66 (1992) 1051.
[3] A. Zmmink and Z. Bucckowski, Bull. Acod. Pot Chim, 28 (1980) 365.
[4] R.B. King and W.M. Douglas, Erarg. Chem, 13 (1974) 1339.
[5] P.E. Bailse and O.S. Mills, Chem, Comrnam, (196) 707.
[6] G. Gervasio, PL Stanghellini and R. Rossetti, Acta Cyystallogr.. B37 (1981) 1198.
[7] A. Zimaiak and Z. Buczowwki, Bull. Acad Pol Chim, 29 (1881) 231.
[8] Y. Chanvin, D. Commeneuc, D. Hugo, A. de Cian and R. Weiss, Noss. J. Chim, 3 (1979) 183.
[9] V.G. Andrizmov and Yu.T. Struchkov, Koord. Khim., 4 (1978) 937.
[10] J. Elquero, R. Jacquier and C. Marzin, Bull. Soc. Chim. Fr., (1968) 713.
[11] G.M. Sheldrick, Acta Crystallogr, A46 (1990) 467.
[12] G.M. Sheldrick, shtax-93, Program for the Refinement of Crystal Structures, University of Götingen, 1993.

[^0]: - Conresponding author.

[^1]: ${ }^{1}$ Will be pablished separasely.

